Problem 10
Express each of the following without absolute value signs, treating various cases separately when necessary.
(i) \[ \begin{align*} |a + b| - |b| \\ \end{align*} \]
- When $a, b >= 0$ then $a + b - b = a$.
- When $|a| > |b|$, $a >= 0$ and $b < 0$ (or vis versa) then $(a + b) - b = a$.
- When $|a| < |b|$, $a >= 0$ and $b < 0$ (or vis versa) then $(-b - a) - b = -a - 2b$.
(ii) \[ \begin{align*} |(|x| - 1)| \\ \end{align*} \]
- When $x = 0$ then $1$.
- When $x > 0$ then $|x - 1|$. Further $x < 1$ then $1 - x$ else $x - 1$.
- When $x < 0$ then $|-x - 1| = |-(x + 1)| = x + 1$.
(iii) \[ \begin{align*} |x| - |x^2| &= |x| - x^2 \\ \end{align*} \]
- When $x = 0$ then $0$.
- When $x > 0$ then $x - x^2$.
- When $x < 0$ then $-x - x^2$.
(iv) \[ \begin{align*} a - |(a - |a|)| \\ \end{align*} \]
- When $a = 0$ then $0$.
- When $a > 0$ then $a$.
- When $a < 0$ then $a - (a + a) = -a$.
You found a typo or some other mistake I made in this text? All articles can be changed here. If you want to exchange ideas then simply drop me a message at contact@paulheymann.de.