Problem 3

If $0 \leq k \leq n$ and using the "binomial coefficient" $\binom{n}{k}$:

(a) Prove that: $$\binom{n + 1}{k} = \binom{n}{k - 1} + \binom{n}{k}$$ \[ \begin{align*} \binom{n}{k - 1} + \binom{n}{k} &= \frac{n!}{(k - 1)!(n - k + 1)!} + \frac{n!}{k!(n - k)!} \\ &= \frac{n!}{\frac{k!}{k}((n - k)!(n - k + 1))} + \frac{n!}{k!(n - k)!} \\ &= \frac{n!k}{k!(n - k)!(n - k + 1)} + \frac{n!(n - k + 1)}{k!(n - k)!(n - k + 1)} \\ &= \frac{n!k + n!n - n!k + n!}{k!(n - k)!(n - k + 1)} \\ &= \frac{n!n + n!}{k!(n - k)!(n - k + 1)} \\ &= \frac{n!(n + 1)}{k!(n - k)!(n - k + 1)} \\ &= \frac{(n + 1)!}{k!(n - k)!(n - k + 1)} \\ &= \frac{(n + 1)!}{k!(n + 1 - k)!} \\ &= \binom{n + 1}{k} \\ \end{align*} \]

(b) Prove that $\binom{n}{k}$ is always a natural number.

Using induction we start with $n = 0$ and $k = 0$: $$\binom{0}{0} = 1 \in N$$ In general, $k = 0$ for any $n$: $$\binom{n}{0} = 1 \in N$$ And $k = n$: $$\binom{n}{n} = 1 \in N$$ Next, $n = i$ for all $k$ are given now prove $n = i + 1$: \[ \begin{align*} \binom{i + 1}{j} &= \binom{n}{k - 1} + \binom{n}{k} && \text{| based on (i)} \\ \end{align*} \] Both $\binom{n}{k} \in N$ and $\binom{n}{k - 1} \in N$ by definition and $N$ being closed under $+$.

(c) Prove that the binomial coefficient is a natural number by showing that it is the number of $k$ sets one can select from $1, 2, ..., n$.

Since $\binom{n}{k}$ is supposed to be the number of sets it has to be $N$ by definition, under the assumption that we exclue $\emptyset$. A proof that doesn't realy on the definition itself is to show that we can define an expression that defines the number of sets $k$ and how that connects to the coefficient.

If we select the sets of size $k$ we select one of the $n$ elements. Next we select one from $n - 1$: \[ \begin{align*} n(n - 1)(n - 2) ... (n - k + 1) &= \frac{n(n - 1) ... 1}{(n - k)(n - k - 1)...1} \\ &= \frac{n!}{(n - k)!} \\ \end{align*} \] Now, we have sets in there which have the same elements but in different order. To exclude those we have to divide by the number of possible combination of sets of $k$ elements. $k(k - 1)(k - 2) ... 1 = k!$ \[ \begin{align*} \frac{n!}{k!(n - k)!} = \binom{n}{k} \\ \end{align*} \]

(d) Prove the binomial theore $(a + b)^n = \sum_{i = 0}^n \binom{n}{i}a^(n - i)b^i$ for any $a, b$ and $n \in N$.

Using induction we start with $n = 1$: \[ \begin{align*} \sum_{j = 0}^1 \binom{n}{j}a^{n - j}b^j &= \binom{1}{0}(a^1b^0) + \binom{1}{1}(a^0b^1) \\ &= a + b \\ &= (a + b)^1 \\ \end{align*} \] And follow with the induction step from $n = k$ to $n = k + 1$: \[ \begin{align*} (a + b)^{k + 1} &= (a + b)^k(a + b) \\ &= (\sum_{j = 0}^{k} \binom{k}{j}a^{n - j}b^j)(a + b) \\ &= \binom{k}{0}a^ka + \binom{k}{1}a^{k - 1}ab ... \binom{k}{k - 1}aab^{k - 1} \binom{k}{k}b^ka \\ &+ \binom{k}{0}a^kb + \binom{k}{1}a^{k - 1}bb ... \binom{k}{k - 1}ab^{k - 1}b \binom{k}{k}b^kb \\ &= \binom{k}{0}a^{k + 1} + \binom{k}{1}a^{k}b ... \binom{k}{k - 1}a^2b^{k - 1} \binom{k}{k}ab \\ &+ \binom{k}{0}a^kb + \binom{k}{1}a^{k - 1}b^2 ... \binom{k}{k - 1}ab^{k} \binom{k}{k}b^{k + 1} \\ &= a^{k + 1} + (\binom{k}{0} + \binom{k}{1})a^{k}b + ... + (\binom{k}{1} + \binom{k}{0})ab^k + b^{k + 1} \\ &= a^{k + 1} + \binom{k + 1}{1}a^{k}b + ... + \binom{k + 1}{1}ab^k + b^{k + 1} \\ &= \sum_{j = 0}^{k + 1} \binom{k}{j}a^{n - j}b^j \\ \end{align*} \]


You found a typo or some other mistake I made in this text? All articles can be changed here. If you want to exchange ideas then simply drop me a message at contact@paulheymann.de.