Problem 20

Prove that the Fibonacci sequence can be represented as: $$a_n = \frac{(\frac{1 + \sqrt{5}}{2})^n - (\frac{1 - \sqrt{5}}{2})^n}{\sqrt{5}}$$ Using complete induction(*) we start with $n = 1$: \[ \begin{align*} a_1 &= \frac{\frac{1 + \sqrt{5}}{2} - \frac{1 - \sqrt{5}}{2}}{\sqrt{5}} \\ &= \frac{\sqrt{5}}{\sqrt{5}} \\ &= 1 \\ \end{align*} \] Now, also have to show that $a_2 = 1$ (based on the Fibonacci definition): \[ \begin{align*} a_2 &= \frac{(\frac{1 + \sqrt{5}}{2})^2 - (\frac{1 - \sqrt{5}}{2})^2}{\sqrt{5}} \\ &= \frac{\frac{1 + 2\sqrt{5} + 5}{4} - \frac{1 - 2\sqrt{5} + 5}{4}}{\sqrt{5}} \\ &= \frac{\sqrt{5}}{\sqrt{5}} \\ &= 1 \\ \end{align*} \] In the induction step, we assume that $1, ..., n - 1$ is correct and now show that this equation holds for $n$: \[ \begin{align*} a_n &= a_{n - 1} + a_{n - 2} \\ &= \frac{(\frac{1 + \sqrt{5}}{2})^{n - 1} - (\frac{1 - \sqrt{5}}{2})^{n - 1}}{\sqrt{5}} \\ &+ \frac{(\frac{1 + \sqrt{5}}{2})^{n - 2} - (\frac{1 - \sqrt{5}}{2})^{n - 2}}{\sqrt{5}} \\ &= \frac{(\frac{1 + \sqrt{5}}{2})^{n}(\frac{1 + \sqrt{5}}{2})^{-1} - (\frac{1 - \sqrt{5}}{2})^{n}(\frac{1 - \sqrt{5}}{2})^{-1}}{\sqrt{5}} \\ &+ \frac{(\frac{1 + \sqrt{5}}{2})^{n}(\frac{1 + \sqrt{5}}{2})^{-2} - (\frac{1 - \sqrt{5}}{2})^{n}(\frac{1 - \sqrt{5}}{2})^{-2}}{\sqrt{5}} \\ &= \frac{(\frac{1 + \sqrt{5}}{2})^{n}(\frac{1 + \sqrt{5}}{2})^{-1} + (\frac{1 + \sqrt{5}}{2})^{n}(\frac{1 + \sqrt{5}}{2})^{-2}}{\sqrt{5}} \\ &- \frac{(\frac{1 - \sqrt{5}}{2})^{n}(\frac{1 - \sqrt{5}}{2})^{-1} + (\frac{1 - \sqrt{5}}{2})^{n}(\frac{1 - \sqrt{5}}{2})^{-2}}{\sqrt{5}} \\ &= \frac{1}{\sqrt{5}} \cdot ((\frac{1 + \sqrt{5}}{2})^{n}(\frac{1 + \sqrt{5}}{2})^{-1} + (\frac{1 + \sqrt{5}}{2})^{n}(\frac{1 + \sqrt{5}}{2})^{-2} \\ &- (\frac{1 - \sqrt{5}}{2})^{n}(\frac{1 - \sqrt{5}}{2})^{-1} + (\frac{1 - \sqrt{5}}{2})^{n}(\frac{1 - \sqrt{5}}{2})^{-2}) \\ &= \frac{1}{\sqrt{5}} \cdot ((\frac{1 + \sqrt{5}}{2})^{n} \cdot ((\frac{1 + \sqrt{5}}{2})^{-1} + (\frac{1 + \sqrt{5}}{2})^{-2}) \\ &- (\frac{1 - \sqrt{5}}{2})^{n} \cdot ((\frac{1 - \sqrt{5}}{2})^{-1} + (\frac{1 - \sqrt{5}}{2})^{-2})) \\ \end{align*} \] For simplification we focus on 2 sub-sections of that equation now. First: \[ \begin{align*} (\frac{1 + \sqrt{5}}{2})^{-1} + (\frac{1 + \sqrt{5}}{2})^{-2} &= \frac{2}{1 + \sqrt{5}} + \frac{4}{(1 + \sqrt{5})^2} \\ &= \frac{2}{1 + \sqrt{5}} \cdot \frac{1 + \sqrt{5}}{1 + \sqrt{5}} + \frac{4}{(1 + \sqrt{5})^2} \\ &= \frac{2 + 2\sqrt{5}}{(1 + \sqrt{5})^2} + \frac{4}{(1 + \sqrt{5})^2} \\ &= \frac{2 + 2\sqrt{5} + 4}{(1 + \sqrt{5})^2} \\ &= \frac{1 + 2\sqrt{5} + 5}{(1 + \sqrt{5})^2} \\ &= \frac{(1 + \sqrt{5})^2}{(1 + \sqrt{5})^2} \\ &= 1 \end{align*} \] Second: \[ \begin{align*} (\frac{1 - \sqrt{5}}{2})^{-1} + (\frac{1 - \sqrt{5}}{2})^{-2} &= \frac{2}{1 - \sqrt{5}} + \frac{4}{(1 - \sqrt{5})^2} \\ &= \frac{2 - 2\sqrt{5}}{(1 - \sqrt{5})^2} + \frac{4}{(1 - \sqrt{5})^2} \\ &= \frac{1 - 2\sqrt{5} + 5}{(1 - \sqrt{5})^2} \\ &= \frac{(1 - \sqrt{5})^2}{(1 - \sqrt{5})^2} \\ &= 1 \end{align*} \] And with that the initial equation becomes: \[ \begin{align*} a_n &= \frac{1}{\sqrt{5}} \cdot ((\frac{1 + \sqrt{5}}{2})^{n} \cdot 1 - (\frac{1 - \sqrt{5}}{2})^{n} \cdot 1) \\ &= \frac{(\frac{1 + \sqrt{5}}{2})^n - (\frac{1 - \sqrt{5}}{2})^n}{\sqrt{5}} \end{align*} \]


You found a typo or some other mistake I made in this text? All articles can be changed here. If you want to exchange ideas then simply drop me a message at contact@paulheymann.de.